TEMA 2. CINEMÁTICA

1 Cinemática.

La mecánica es el campo de la física encargada de estudiar el movimiento y los fenómenos físicos relacionados con la fuerza y la masa. La cinemática es la rama de la mecánica que estudia las características fundamentales del movimiento, ya que este se presenta en todas las disciplinas de la física.

1.1 Vectores desplazamiento, velocidad y aceleración.

Supongamos que estamos interesados en estudiar el movimiento de un objeto (un coche, una pelota, etc.). Cuando nos centramos en la cinemática del objeto, se puede idealizar e imaginarlo como si fuera un punto independientemente de su tamaño, es decir, tratarlo como si fuese una partícula puntual.

Podemos escoger un sistema de coordenadas A y expresar la **posición** del objeto con un vector $\vec{r_i}$ en un instante de tiempo t_i (de libre elección):

$$\overrightarrow{r_i} = (r_{i,x} \quad r_{i,y} \quad r_{i,z})$$

Dejamos evolucionar el objeto, y nos preguntamos por su posición $\vec{r_f}$ en el instante t_f . Entonces, la cantidad y dirección que se ha desplazado viene dada por el vector **desplazamiento**:

$$\Delta \vec{r} = \overrightarrow{r_f} - \overrightarrow{r_l} = (r_{f,x} - r_{i,x} - r_{f,y} - r_{i,y} - r_{f,z} - r_{i,z}) =$$

$$= (r_{f,x} - r_{i,x})\hat{i} + (r_{f,y} - r_{i,y})\hat{j} + (r_{f,z} - r_{i,z})\hat{k}$$

Conocido el vector desplazamiento y el tiempo transcurrido en el intervalo, también podemos conocer la **velocidad media**:

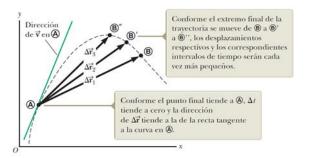
$$\overrightarrow{v_m} = \frac{\Delta \overrightarrow{r}}{\Delta t} = \begin{pmatrix} \frac{r_{f,x} - r_{i,x}}{t_f - t_i} & \frac{r_{f,y} - r_{i,y}}{t_f - t_i} & \frac{r_{f,z} - r_{i,z}}{t_f - t_i} \end{pmatrix}$$

que nos dará una idea de las características del movimiento.

En la práctica, usaremos la posición en función del tiempo $\vec{r}(t)$, y conociendo el **desplazamiento instantáneo** (también en función del tiempo), podremos calcular la **velocidad instantánea** del objeto:

$$\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = \begin{pmatrix} \frac{dr_x}{dt} & \frac{dr_y}{dt} & \frac{dr_z}{dt} \end{pmatrix}$$

Como puede verse en la figura siguiente, el vector velocidad instantánea es siempre tangente a la trayectoria.



La aceleración instantánea cuantifica cómo cambia la velocidad con el tiempo:

$$\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = \begin{pmatrix} \frac{dv_x}{dt} & \frac{dv_y}{dt} & \frac{dv_z}{dt} \end{pmatrix} = \begin{pmatrix} \frac{d^2r_x}{dt^2} & \frac{d^2r_y}{dt^2} & \frac{d^2r_z}{dt^2} \end{pmatrix}$$

Por tanto, conocido el desplazamiento $\vec{r}(t)$ siempre podemos calcular la velocidad $\vec{v}(t)$ y la aceleración $\vec{a}(t)$ del objeto. También podemos determinar el desplazamiento instantáneo a partir de la posición inicial \vec{r}_l , la velocidad inicial \vec{v}_l , y la aceleración instantánea $\vec{a}(t)$. Veamos unos ejemplos:

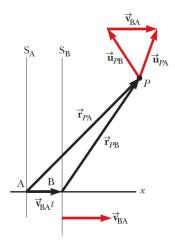
1) En el caso más sencillo de un objeto con **aceleración nula** $\vec{a}(t) = 0$, esto significa que $\vec{v}(t) = \vec{v}$ es constante (esto es, independiente del tiempo), y por tanto, $\vec{v} = \vec{v}_m$. Decimos que la partícula describe un **movimiento uniforme**. Utilizando la fórmula para la velocidad media (con $t_i = 0$) es fácil deducir la velocidad en el instante $t_f = t$:

$$\vec{r}(t) = \vec{r}_i + \vec{v}t$$

Supongamos un sistema de referencia alternativo B. Si consideramos que el sistema de coordenadas B se mueve con una velocidad (constante) \vec{v}_{BA} con respecto a A, la posición de nuestro objeto en el sistema A es:

$$\vec{r}_{PA} = \vec{r}_{PB} + \vec{v}_{BA}t$$
:

donde \vec{r}_{PA} es su posición en el sistema A. Además, podemos introducir la velocidad relativa \vec{u}_{PA} al sistema de coordenadas A como $\vec{u}_{PA} = \vec{u}_{PB} + \vec{v}_{BA}$, como podemos ver en la siguiente figura:



Por ejemplo, supongamos un barco que atraviesa un río a una velocidad \vec{v}_{bA} con respecto a un sistema de coordenadas situado en el agua A. La propia agua se mueve con velocidad \vec{v}_{AS} con respecto a un sistema de coordenadas situado en el suelo S debido a la corriente. La velocidad relativa del barco con respecto al suelo vendrá dada por,

$$\vec{v}_{bS} = \vec{v}_{bA} + \vec{v}_{AS}$$
:

2) En el caso de **aceleración constante** $\vec{a}(t) = \vec{a}$, coincide con la aceleración media $\vec{a} = \vec{a}_m$. Decimos que la partícula describe un **movimiento uniformemente acelerado**. Entonces:

$$\vec{v}(t) = \vec{a}_i + \vec{a}t$$

Si sustituimos este resultado en la ecuación:

$$\frac{d\vec{r}}{dt} = \vec{a}_i + \vec{a}t$$

Integrando, obtendremos:

$$\vec{r}(t) = \vec{r}_i + \vec{v}_i t + \frac{1}{2} \vec{a} t^2$$

Si ahora consideramos que la partícula se desplaza $\Delta \vec{r} = \overrightarrow{r_f} - \overrightarrow{r_l}$, podremos escribir:

$$|\vec{v}_f|^2 = |\vec{v}_i|^2 + 2\vec{a} \cdot \Delta \vec{r}$$

Esta relación es útil a la hora de resolver determinado tipo de problemas (por ejemplo, el tiro parabólico).

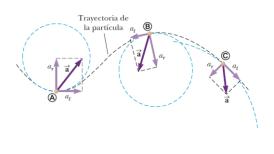
1.2 Componentes intrínsecas de la aceleración

Aquí vamos a explicar las componentes intrínsecas de la aceleración, conocidas como la aceleración normal y aceleración tangencial. En un movimiento general, la aceleración y la velocidad no son paralelas, y el ángulo que forman se puede calcular mediante la siguiente expresión:

$$\cos\theta = \frac{\vec{v} \cdot \vec{a}}{|\vec{v}| \cdot |\vec{a}|}$$

luego la trayectoria no es recta, sino curvilínea.

En estos casos es conveniente expresar la aceleración en un sistema de coordenadas donde el eje x es tangencial a la trayectoria (por tanto, paralelo a \vec{v}) y el eje y es perpendicular en todo instante (el sistema de coordenadas no es fijo), como se puede ver en la figura:



$$\vec{a} = \vec{a}_t + \vec{a}_n$$

donde \vec{a}_t y \vec{a}_n son las componentes tangencial y normal (o centrípeta) de la aceleración, respectivamente.

Si conocemos el ángulo θ y el módulo de la aceleración es sencillo calcular ambas componentes usando trigonometría:

$$|\vec{a}_t| = |\vec{a}| \cos \theta$$

$$|\vec{a}_n| = |\vec{a}| \sin \theta$$

Además, podemos expresar la aceleración en términos de los vectores unitarios asociados a este sistema de coordenadas \hat{u}_t y \hat{u}_n :

$$\overrightarrow{a_t} = |\overrightarrow{a_t}| \widehat{u}_t$$

$$\overrightarrow{a_n} = |\overrightarrow{a_n}| \widehat{u}_n$$

Debido a que la velocidad es tangente a la trayectoria en todo momento se cumple:

$$\widehat{m{u}}_t = rac{ec{m{v}}}{|ec{m{v}}|}$$

Podemos obtener el vector unitario normal mediante la siguiente expresión:

$$\widehat{u}_n = \frac{\vec{a} - |\overrightarrow{a_t}| \widehat{u_t}}{|\overrightarrow{a_n}|}$$

Por definición, la aceleración tangencial cuantifica el cambio en el módulo de la velocidad:

$$\vec{a}_t = \frac{d|\vec{v}|}{dt} \, \hat{u}_t$$

La aceleración normal cuantifica el cambio en la dirección del vector velocidad y se puede expresar como:

$$\vec{a}_n = \frac{|\vec{v}|^2}{\rho} \, \hat{u}_n$$

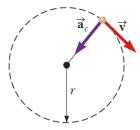
Donde $\rho = \frac{|\vec{v}|^2}{|\vec{a}_n|}$ es el **radio de curvatura**.

Conociendo este radio, podemos calcular las coordenadas del centro de curvatura \vec{r}_0 :

$$\vec{r}_{\rm O} = \vec{r} + \rho \hat{u}_n$$

Del estudio de las componentes intrínsecas de la aceleración podemos llegar a las siguientes conclusiones:

- Si $|\vec{a}_n| = 0$, entonces la **trayectoria es rectilínea**.
- Si $|\vec{a}_t|=0$ (velocidad constante) y $|\vec{a}_n|$ es constante, entonces el movimiento es circular uniforme con periodo T $=\frac{2\pi\rho}{|\vec{v}|}$ y la trayectoria es una circunferencia de radio ρ y con centro en \vec{r}_0 .



<u>Ejemplo</u>: Un satélite orbita alrededor de la Tierra a 200 km por encima de la superficie terrestre y con un periodo T=88,2 min. La aceleración normal o centrípeta apunta hacia la Tierra (ya que $\vec{a}_t=0$) y su modulo es ($R_{Tierra}=6,37\cdot10^6$ m):

$$T = \frac{2\pi\rho}{|\vec{v}|} \Longrightarrow |\vec{v}| = \frac{2\pi\rho}{T}$$

$$|\vec{a}_n| = \frac{|\vec{v}|^2}{\rho} = \frac{4\pi^2 \rho}{T^2}$$

Sustituyendo los datos:

$$T = 88.2 \frac{60 \text{ s}}{1 \text{ min}} = 5292 \text{ s}$$

$$\rho = 200 \text{ km} \cdot \frac{1000 \text{ m}}{1 \text{ km}} + 6.37 \cdot 10^6 \text{ m} = 6.57 \cdot 10^6 \text{ m}$$

el valor de $|\vec{a}_n| = 9.26 \frac{m}{s^2}$.

1.3 Estudios de algunos tipos de movimiento

Vamos a estudiar en este apartado diferentes tipos de movimientos.

1.3.1 Movimiento circular uniformemente acelerado

Cuando la aceleración tangencial $|\vec{a}_t|$ y el radio ρ son ambos constantes, el objeto describe un **movimiento circular uniformemente acelerado** (m.c.u.a.) alrededor de un eje de rotación. En tal caso podemos definir la **aceleración angular** o de rotación:

$$\alpha = \frac{|\vec{a}_t|}{\rho}$$

Además, la velocidad angular será:

$$\omega = \frac{|\vec{v}|}{\rho}$$

La relación entre ambas magnitudes es:

$$\alpha = \frac{d\omega}{dt}$$

Lo cual implica que $\vec{a}_t = \omega^2 \rho$.

Recordando la ecuación para movimientos uniformemente acelerados, podemos expresar la velocidad angular cuando la aceleración angular es constante de la forma siguiente:

$$\omega(t) = \omega_i + \alpha t$$

donde ω_i es la velocidad angular inicial.

Calculando el **desplazamiento angular** $\theta(t)$:

$$\theta(t) = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$$

y la **distancia lineal** d, recorrida por el objeto en la circunferencia:

$$d = \theta \cdot \rho$$

1.3.2 Caída libre

Otro caso sencillo de estudiar es la cada libre de un objeto debido a la fuerza de la gravedad. La trayectoria tiene lugar a lo largo del eje vertical (su desplazamiento en el resto de direcciones es cero). La única aceleración es la de la gravedad ($g = 9.8 \text{ m/s}^2$).

A partir de las expresiones para movimiento con aceleración constante, obtenemos la posición en función del tiempo:

$$\vec{r}(t) = (y_i + v_i t - \frac{1}{2}gt^2)\hat{j}$$

donde y_i y v_i son la posición y velocidad iniciales de la partícula en el eje vertical.

1.3.3 Movimiento de un proyectil

Ahora estudiaremos el caso de un objeto como puede ser un proyectil lanzado con una velocidad inicial \vec{v}_i desde una plataforma situada en la posición \vec{r}_i .

La única aceleración es la gravedad, por tanto, podemos emplear la expresión de la posición en función del tiempo (similar a la vista en el epígrafe anterior):

$$\vec{r}(t) = \vec{r}_i + \vec{v}_i t - \frac{1}{2}gt^2\hat{j}$$

donde \vec{r}_i y \vec{v}_i son la posición y velocidad iniciales de la partícula.

Las ecuaciones de las componentes son:

$$r_x(t) = r_{i,x} + v_{i,x}t$$

$$r_y(t) = r_{i,y} + v_{i,y}t - \frac{1}{2}gt^2$$

En el caso en que $r_{i,x} = 0$, despejando el tiempo de la ecuación de $r_x(t)$:

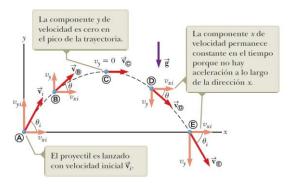
$$t = \frac{r_x}{v_{i,x}}$$

Si sustituimos la expresión anterior en la ecuación de $r_v(t)$:

$$r_y(t) = r_{i,y} + \frac{v_{i,y}}{v_{i,x}} r_x - \frac{g}{2v_{i,x}^2} r_x^2$$

Obtenemos una **trayectoria parabólica**. Por eso estos movimientos también son conocidos como **tiros parabólicos**.

Podemos ver algunas características en la figura siguiente:



<u>Ejemplo</u>: Un proyectil es lanzado con una magnitud $v_i = |\vec{v}_i| = 495$ m/s y un ángulo $\theta = 45^\circ$ con respecto a la horizontal desde un acantilado a 50 m ($r_{i,y} = 50$ m). Calcular el tiempo de vuelo, distancia alcanzada, y velocidad en el momento del impacto.

• El tiempo de vuelo (t_v) se obtiene tomando $r_v = 0$:

$$0 = r_{i,y} + v_{i,y}t_v - \frac{1}{2}gt_v^2$$

Sustituyendo las variables correspondientes:

$$r_{i,v} = 50 \text{ m}$$

$$v_{i,v} = 495 \sin 45^{\circ}$$

Tenemos:

$$0 = 50 + (495 \sin 45^{\circ}) \cdot t_v - \frac{1}{2} \cdot 9.8 \cdot t_v^2$$

Resolviendo la ecuación de 2º grado, obtenemos el tiempo de vuelo:

$$t_{v} = 71.6 \text{ s}$$

Nota: la solución $t_v = -0.1$ s no tiene sentido físico (un tiempo no puede ser negativo).

• La distancia *d* alcanzada se obtiene:

$$d = v_{i,x} \cdot t_v = (495 \cos 45^\circ) \cdot 71,6 = 25061,3 \text{ m}$$

• La velocidad de impacto se calcula a partir de las siguientes expresiones:

$$v_{f,x} = v_{i,x}$$

$$v_{f,y} = v_{i,y} - gt_v$$

Sustituyendo valores:

$$v_{f,x} = 495 \cos 45^{\circ} = 350 \text{ m/s}$$

$$v_{f,y} = 495 \sin 45^{\circ} - 9.8 \cdot 71.6 = -351.7 \text{ m/s}$$

Por tanto, vectorialmente:

$$\vec{v}_f = v_{f,x}\hat{\imath} + v_{f,y}\hat{\jmath} = (350\hat{\imath} - 351,7\hat{\jmath}) \text{ m/s}$$